NAPOLEON – MORLEY TRIANGLES – A Tran Quang Hung construction
Tran
Quang Hung – Advanced Plane Geometry message #1740
Let
DEF,XYZ be Morley and (outer) Napoleon triangle of ABC. DX,EY,FZ cuts BC,CA,AB
at U,V,W, respectively. Then, AU,BV,CW are concurrent.
Generalization:
Let
ABC be a triangle, ANBNCN any Napoleon triangle
of ABC (inner or outer) and AMBMCM any Morley
triangle of ABC (1st, 2nd, 3rd, 1st adjunct, 2nd adjunct or 3rd adjunct). Let
A’=(ANAM) ∩ (BC) and B’, C’ built cyclically. Then lines (AA’), (BB’), (CC’)
concur.
Considere the function:
N(A,B,C,n) = [1, -2*cos(C+n*Pi/3), -2*cos(B+n*Pi/3)]
Then N(A,B,C,1) is the trilinear A-vertex
of the INNER Napoleon triangle and N(A,B,C,-1) is the trilinear A-vertex of the
OUTER Napoleon triangle
Similarlly the function
M(A,B,C,m) = [1/(1-2*m^2), 2*cos(C/3+m*Pi/3), 2*cos(B/3+m*Pi/3)]
gives the trilinear coordinates of the A-vertex of 1st, 2nd
and 3rd Morley triangles for m=0, m=1 and m=-1, respectively.
If n Î {-1,1} and m Î
{-1,0,1}, i.e, for ANBNCN equal to the Napoleon inner or outer triangles and for AMBMCM equal to 1st, 2nd or 3rd Morley triangles of ABC, we find, in general:
A’ = [0, F(B,n,m), F(C,n,m)]
where
F(A,n,m)=
1/(cos(A+n*Pi/3)+cos(A/3+m*Pi/3)*(1-2*m^2))
therefore lines (AA’), (BB`), (CC’) concur at:
Z(n,m) = [ F(A,n,m) , F(B,n,m) , F(C,n,m) ]
Note that each vertex of 1st, 2nd or
3rd MORLEY-ADJUNCT triangle is the isogonal conjugate of the correspondant
vertex of the 1st, 2nd and 3rd MORLEY triangle, respectively. Generalizating
this property makes easier to find A’ when AMBMCM is equal to 1st, 2nd or 3rd Morley-ADJUNCT triangle of ABC, i.e.:
A’ = [0, F’(B,n,m), F’(C,n,m)]
where
F’(A,n,m)=
cos(A/3+m*Pi/3)/(4*cos(A+n*Pi/3)*cos(A/3+m*Pi/3)+1-2*m^2)
being the point of concurrence of (AA’), (BB`), (CC’):
Z’(n,m) = [ F’(A,n,m) , F’(B,n,m) , F’(C,n,m) ]
The next table shows the central
function and ETC-SEARCH values u,v for these 12 points of concurrence
NAPOLEON INNER
|
NAPOLEON OUTER
|
|
1st. MORLEY
|
1/(cos(A+Pi/3)+cos(A/3))
( -1.061175889876748, -1.37248299267917)
Coordinates found by Chris
Tienhoven, ADGEOM message #1760
|
1/(cos(A-Pi/3)+cos(A/3))
( 1.449383712449321, 1.37198638995608 )
Coordinates found by Bernard
Gibert, ADGEOM message #1753
|
2nd. MORLEY
|
1/(cos(A+Pi/3)-cos(A/3+Pi/3))
( 2.993155354733740, 1.87035114072660 ) |
1/(cos(A-Pi/3)-cos(A/3+Pi/3))
( 2.312842706106623, 1.60870667887718 ) |
3rd. MORLEY
|
1/(cos(A+Pi/3)-cos(A/3-Pi/3))
( 3.133454149812978, 1.98256834592023 ) |
1/(cos(A-Pi/3)-cos(A/3-Pi/3))
( 6.747193170763110, 5.24015654664033 ) |
1st. MORLEY-ADJUNCT
|
cos(A/3)/(4*cos(A+Pi/3)*cos(A/3)+1)
( 1.943228854328264, 5.45687972067145 ) |
cos(A/3)/(4*cos(A-Pi/3)*cos(A/3)+1)
( 1.554607572897988, 1.39778519618714 ) |
2nd. MORLEY-ADJUNCT
|
cos(A/3+Pi/3)/(4*cos(A+Pi/3)*cos(A/3+Pi/3)-1)
( -14.459440389293710, -8.44530315002158 ) |
cos(A/3+Pi/3)/(4*cos(A-Pi/3)*cos(A/3+Pi/3)-1)
( 2.308322612923908, 3.48600580865934 ) |
3rd. MORLEY-ADJUNCT
|
cos(A/3-Pi/3)/(4*cos(A+Pi/3)*cos(A/3-Pi/3)-1)
( 3.267771237439981, 1.96385627384925 ) |
cos(A/3-Pi/3)/(4*cos(A-Pi/3)*cos(A/3-Pi/3)-1)
( 1.422917983150731, 1.03292991115707 ) |
César
Lozada
Sept. 19,
2014