Thursday, January 29, 2015

Classic centers of Wolfram's triangles


Classic centers (incenter, centroid, circumcenter, orthocenter and nine-point-center) of most of triangles defined in Wolfram’s has been calculated. Below table shows their indexes in ETC.

For centers in yellow (not in ETC), please download table with barycentric coordinates, some properties and ETC-6-9-13 search values from the next link:



WOLFRAM'S TRIANGLES - CLASSIC CENTERS IN ETC
Incenter
Centroid
Circumcenter
Orthocenter
NPC
ABC
X(1)
X(2)
X(3)
X(4)
X(5)
ANTICOMPLEMENTARY
X(8)
X(2)
X(4)
X(20)
X(3)
BROCARD 1
X(3923)
X(2)
X(182)
X(1352)

BROCARD 2


X(182)


BROCARD 3





BROCARD 4

X(6032)
X(381)


CIRCUMMEDIAL


X(3)


CICUMNORMAL
X(3)
X(3)
X(3)
X(3)
X(3)
CIRCUMORTHIC
X(4)
X(5890)
X(3)
X(5889)
X(6102)
CIRCUMPERP 1

X(165)
X(3)
X(40)
X(3579)
CIRCUMPERP 2

X(3576)
X(3)
X(1)
X(1385)
COSYMMEDIAL

X(353)
X(3)


EULER
X(946)
X(381)
X(5)
X(4)
X(546)
EXCENTRAL
X(164)
X(165)
X(40)
X(1)
X(3)
EXTANGENTS
X(40)


X(6237)

EXTOUCH

X(210)
X(1158)


FEUERBACH
X(5960)
X(5947)
X(5)
X(5948)

FUHRMANN

X(5587)
X(355)
X(1)
X(5)
GREBE OUTER
X(3640)
X(5860)
X(1160)
X(5870)
X(5874)
GREBE INNER
X(3641)
X(5861)
X(1161)
X(5871)
X(5875)
HEXYL

X(3576)
X(1)
X(40)
X(3)
INCENTRAL

X(1962)

X(500)

INTANGENTS
X(1)


X(6238)

INTOUCH
X(177)
X(354)
X(1)
X(65)
X(942)
JOHNSON
X(355)
X(381)
X(4)
X(3)
X(5)
LEMOINE





LUCAS CENTRAL
X(1151)




LUCAS TANGENTS


X(1151)


MACBEATH





MEDIAL
X(10)
X(2)
X(5)
X(3)
X(140)
MIDARC

X(3576)
X(3)
X(1)
X(1385)
MIDHEIGHT

X(5943)
X(5893)


MIXTILINEAR





MORLEY 1
X(356)
X(356)
X(356)
X(356)
X(356)
MORLEY 2
X(3276)
X(3276)
X(3276)
X(3276)
X(3276)
MORLEY 3
X(3277)
X(3277)
X(3277)
X(3277)
X(3277)
NAPOLEON INNER
X(2)
X(2)
X(2)
X(2)
X(2)
NAPOLEON OUTER
X(2)
X(2)
X(2)
X(2)
X(2)
NEUBERG 1

X(2)



NEUBERG 2

X(2)



ORTHIC
X(4)
X(51)
X(5)
X(52)
X(143)
ORTHOCENTROIDAL
X(5902)
X(5640)
X(381)
X(5890)
X(5946)
REFLECTION

X(3060)
X(195)


SQUARES OUTER





SQUARES INNER





STEINER



X(3)

SYMMEDIAL





TANGENTIAL
X(3)
X(154)
X(26)
X(155)
X(156)
VECTEN OUTER

X(2)
X(641)
X(485)
X(6118)
VECTEN INNER

X(2)
X(642)
X(486)
X(6119)
YFF CONTACT


X(5592)
X(8)