Monday, December 15, 2014

Major centers with nice trigonometric coordinates

X(6149)=X(13)-Isoconjugate of X(14), (the last center published in ETC by Dec 12, 2014) has the very nice barycentrics coordinates F(A) : F(B) : F(C), where F(A) = sin(3*A).

The next table shows other centers with similar simple and nice trigonometric coordinates, when these represent trilinears or barycentrics and when points can be found from other known centers.

F(A)
Center with trilinears F(A):F(B):F(C)
Center with barycentrics F(A):F(B):F(C)
sin(A)
X(6)
X(1)
sin(2*A)
X(48)
X(3)
sin(3*A)
X(50)
X(6149)
sin(4*A)
X(563)
X(1147)
sin(6*A)
(47,48)∩(50,2477)
Complement of X(562)
(2,562)∩(3,54)



sin(2*A)^2
(1,1748)∩(31,48)
X(577)
sin(2*A)^3

(3,54)∩(4,2055)
sin(2*A)^4

(577,1147)∩(1971,2055)
sin(3*A)^2
(50,215)∩(1109,2619)
(6,1511)∩(1971,3258)
sin(3*A)^3
(49,50)∩(54,2088)




cos(A)
X(3)
X(63)
cos(2*A)
X(47)
X(1993)
cos(3*A)
X(49)
(48,63)∩(662,2167)
cos(4*A)
Eigencenter of anticevian triangle of X(563)
On line (1,1748)
(2,95)∩(50,1993)



cos(A)^2
X(255)
X(394)
cos(A)^3
X(1092)
(48,63)∩(92,1958)
cos(A)^4
 (1,775)∩(47,560)
 (2,801)∩(32,1993)



cos(2*A)^2
 (1,1748)∩(560,2964)
(2,95)∩(32,1994)



tan(A)
X(19)
X(4)
tan(2*A)
X(1820)
X(68)
tan(3*A)

X(562)



tan(A)^2
X(1096)
X(393)
tan(A)^3
Isogonal conjugate of X(1102)
(19,158)∩(811,2128)
Isogonal conjugate of X(3964)
(4,51)∩(25,393)
tan(A)^4

Polar conjugate of X(4176)
(133,3863)∩(185,1208)
tan(2*A)^2

 (68,577)∩(216,2165)
   

Thursday, December 11, 2014

Cyclology with medial triangle (Anopolis #2149 by Seiichi Kirikami)

Anopolis message #2149, by Seiichi Kirikami, Dec 11/2014 (https://groups.yahoo.com/neo/groups/Anopolis/conversations/topics/2149)

Let ΔA’B’C’ be the medial triangle of ΔABC.

Let X be the X(n)-ETC-center-of- ΔABC. Let A” be the X(n)-ETC-center-of-ΔAB’C’, B” be the X(n)-ETC-center-of-ΔBC’A’ and C” be the X(n)-ETC-center-of-ΔCA’B’.

The triangles ΔA’B’C’ and ΔA”B”C” are cyclologic (*)

(*) i.e., {a’} = circumcircle(ΔA’B”C”), {b’} = circumcircle(ΔB’C”A”) and {c’} = circumcircle(ΔC’A”B”) concur at Z 
and 
{a”} = circumcircle(ΔA”B’C’), {b”} = circumcircle(ΔB”C’A’) and {c”} = circumcircle(ΔC”A’B’) concur at Z.

If X= u : v :w (trilinears) then:

1)     Z’ = u*(v*cos(B)-w*cos(C))*(u*(w*sin(B)-v*sin(C))+v*w*sin(B-C)) : :

2)     Z” = f(a,b,c,u,v,w)*g(a,b,c,u,v,w) : :
where:
f(a,b,c,u,v,w)= (a*b*c*v*w+c*(a^2-c^2)*w*u+b*(a^2-b^2)*u*v+a*(-b^2-c^2+a^2)*u^2)
g(a,b,c,u,v,w)= (-b*c *(v^2+w^2)*u +a*(b*v+c*w) *v*w +(2*a^2-b^2-c^2)*u*v*w)

3)     Z’ lies on circumcircle of ΔA’B’C’  and Z”  lies on circumcircle of ΔA”B”C” 

4)     Z’ and Z” are symmetrical w/r to the radical trace of circumcircles of ΔA’B’C’ and ΔA”B”C”

5)     Z”=midpoint(X, anticomplement(Z’)) or Z’=complement(reflection(X,Z”)).
Note:  anticomplement(Z’) lies on the circumcircle of  ΔABC.

6)     If {h(T)} is the rectangular circum-hyperbola with center T on the NPC of ΔABC, then for all P in {h(T)} we have Z’(P) = T, i.e.:

Z’(P)=X(11)  for all P on Feuerbach hyperbola
Z’(P)=X(115) for all P on Kiepert hyperbola

Result (6) above let us deduce the existence of some rectangular circum-hyperbolas:

Center
Trilinear equation
[Through ETC-centers]
Perspector's 1st coordinate
Properties
ETC 6-9-13 search
X(116)
Σ a*(b-c)*(-b^2+a*b-b*c+c*a-c^2)*v*w
[4, 103, 947, 1002, 1126, 1174, 2141, 3681, 3730, 4184]
a*(b-c)*(-b^2+a*b-b*c+c*a-c^2)
Complement of X(3261)
-6.381084332890005
X(120)
Σ (c^3+c*a^2-c*b^2-2*a*b*c+b*a^2+b^3-b*c^2)*v*w
[4, 668, 1292, 4236]
X(3290)
X(122)
Σ b*c*(b^2-c^2)*(3*a^4-(b^2-c^2)^2-2*a^2*(b^2+c^2))*v*w
[4, 20, 253, 1249, 1294, 3346, 3668, 5930]
(3*a^4-(b^2-c^2)^2-2*a^2*(b^2+c^2))*(b^2-c^2)/a
Complement of X(3265)
 -3.600719569463247
X(123)
Σ(c-b)*(a^4+2*b*c*a^2-2*a*b*c*(b+c)-(b^2-c^2)^2)*v*w
[4, 961, 998, 1295, 1766, 2995, 3436]
(b-c)*(a^4+2*b*c*a^2-2*b*c*(b+c)*a-(b^2-c^2)^2)
(6,2431)∩(230,231)
 -3.012216446340097
X(124)
Σ (b-c)*(-b^3+b*a^2-a*b*c-c^3+c*a^2)*v*w*a
[4, 58, 102, 573, 959, 994, 3417, 3869, 4225]
a*(b-c)*(-b^3-a*b*c-c^3+(b+c)*a^2)
(6,652)∩(230,231)
-3.443760727600679
X(5514)
Σ (c-b)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2)*v*w
[4, 40, 57, 189, 196, 223, 329, 937, 972, 1817, 2184, 3194, 3345]
X(6129)
X(5515)
Σ b*c*(b-c)*(a^2+(b+c)^2)*v*w
[4, 75, 388, 1010, 1065, 1220, 2345, 4385]
(b-c)*(a^2+(b+c)^2)/a
(230,231)∩(513,3700)
X(5521)
Σ (b-2)*(a^2-b^2+c^2)*(a^2+b^2-c^2)*v*w
[4, 19, 28, 34, 286, 915, 1118, 1119, 5317]
(b-c)/(b^2+c^2-a^2)
Isogonal conjugate of X(1332)
-0.772000939862511

Some triads of (N, I, J) such that Z’=X(I) and Z”=X(J) for n=N:

(1, 11, 214), (2, 115, 2482), (3, 125, 1511), (5, 137, Q5), (6, 125, Q6), (8, 11, 1145), (9, 11, Q9)
where:

Q5= (1+2*cos(2*B)+2*cos(2*C)-2*cos(2*A))*
        (2*cos(A)*(cos(2*B-2*C)-2+4*cos(A)^2)+(-  1+4*cos(A)^2)*cos(B-C)) : :
     = On lines (2,1263), (3,2888), (5,930), (30,128), (137,3628) (at least)
     = On loci K038, K067
     = Complement of X(1263)
     = Inverse of X(5898) in circumcircle
     = Midpoint of: (5,930) (at least)
     = Reflection of (137/3628) (at least)
     = [7.346237636455233551025, 4.968703721274385706387, -3.189778541954149563316]

 Q6= a*(a^4-b^4-c^4+b^2*c^2)*(2*a^2-b^2-c^2)::
     = On lines (2,67), (3,1177), (5,542), (6,110), (74,5085), (113,1503), (125,3589) (at least)
     = On loci: K042, K043, K565
     = Complementary conjugate of X(858)
     = Complement of X(67)
     = Midpoint of: (6,110) (at least)                               
     = Reflection of: (125/3589), (141/5972) (at least)
     = [0.9502357345836802528899, 0.2943117751284885726792, 2.998339837010649974545]

Q9 = (2*a^2-a*(b+c)-(b-c)^2)*(a^2-2*a*(b+c)+b^2+b*c+c^2)::
      = On lines (1,3939), (2,3254), (3,2801), (9,100), (10,528), (119,516), (142,3035) (at least)
      = Complement of X(3254)
      = Midpoint of: (9,100) (at least)
      = Reflection of: (142/3035) (at least)
      = [3.086904417102852112698, 0.3728597156591479833209, 1.957805717019037216497]