Thursday, December 11, 2014

Cyclology with medial triangle (Anopolis #2149 by Seiichi Kirikami)

Anopolis message #2149, by Seiichi Kirikami, Dec 11/2014 (https://groups.yahoo.com/neo/groups/Anopolis/conversations/topics/2149)

Let ΔA’B’C’ be the medial triangle of ΔABC.

Let X be the X(n)-ETC-center-of- ΔABC. Let A” be the X(n)-ETC-center-of-ΔAB’C’, B” be the X(n)-ETC-center-of-ΔBC’A’ and C” be the X(n)-ETC-center-of-ΔCA’B’.

The triangles ΔA’B’C’ and ΔA”B”C” are cyclologic (*)

(*) i.e., {a’} = circumcircle(ΔA’B”C”), {b’} = circumcircle(ΔB’C”A”) and {c’} = circumcircle(ΔC’A”B”) concur at Z 
and 
{a”} = circumcircle(ΔA”B’C’), {b”} = circumcircle(ΔB”C’A’) and {c”} = circumcircle(ΔC”A’B’) concur at Z.

If X= u : v :w (trilinears) then:

1)     Z’ = u*(v*cos(B)-w*cos(C))*(u*(w*sin(B)-v*sin(C))+v*w*sin(B-C)) : :

2)     Z” = f(a,b,c,u,v,w)*g(a,b,c,u,v,w) : :
where:
f(a,b,c,u,v,w)= (a*b*c*v*w+c*(a^2-c^2)*w*u+b*(a^2-b^2)*u*v+a*(-b^2-c^2+a^2)*u^2)
g(a,b,c,u,v,w)= (-b*c *(v^2+w^2)*u +a*(b*v+c*w) *v*w +(2*a^2-b^2-c^2)*u*v*w)

3)     Z’ lies on circumcircle of ΔA’B’C’  and Z”  lies on circumcircle of ΔA”B”C” 

4)     Z’ and Z” are symmetrical w/r to the radical trace of circumcircles of ΔA’B’C’ and ΔA”B”C”

5)     Z”=midpoint(X, anticomplement(Z’)) or Z’=complement(reflection(X,Z”)).
Note:  anticomplement(Z’) lies on the circumcircle of  ΔABC.

6)     If {h(T)} is the rectangular circum-hyperbola with center T on the NPC of ΔABC, then for all P in {h(T)} we have Z’(P) = T, i.e.:

Z’(P)=X(11)  for all P on Feuerbach hyperbola
Z’(P)=X(115) for all P on Kiepert hyperbola

Result (6) above let us deduce the existence of some rectangular circum-hyperbolas:

Center
Trilinear equation
[Through ETC-centers]
Perspector's 1st coordinate
Properties
ETC 6-9-13 search
X(116)
Σ a*(b-c)*(-b^2+a*b-b*c+c*a-c^2)*v*w
[4, 103, 947, 1002, 1126, 1174, 2141, 3681, 3730, 4184]
a*(b-c)*(-b^2+a*b-b*c+c*a-c^2)
Complement of X(3261)
-6.381084332890005
X(120)
Σ (c^3+c*a^2-c*b^2-2*a*b*c+b*a^2+b^3-b*c^2)*v*w
[4, 668, 1292, 4236]
X(3290)
X(122)
Σ b*c*(b^2-c^2)*(3*a^4-(b^2-c^2)^2-2*a^2*(b^2+c^2))*v*w
[4, 20, 253, 1249, 1294, 3346, 3668, 5930]
(3*a^4-(b^2-c^2)^2-2*a^2*(b^2+c^2))*(b^2-c^2)/a
Complement of X(3265)
 -3.600719569463247
X(123)
Σ(c-b)*(a^4+2*b*c*a^2-2*a*b*c*(b+c)-(b^2-c^2)^2)*v*w
[4, 961, 998, 1295, 1766, 2995, 3436]
(b-c)*(a^4+2*b*c*a^2-2*b*c*(b+c)*a-(b^2-c^2)^2)
(6,2431)∩(230,231)
 -3.012216446340097
X(124)
Σ (b-c)*(-b^3+b*a^2-a*b*c-c^3+c*a^2)*v*w*a
[4, 58, 102, 573, 959, 994, 3417, 3869, 4225]
a*(b-c)*(-b^3-a*b*c-c^3+(b+c)*a^2)
(6,652)∩(230,231)
-3.443760727600679
X(5514)
Σ (c-b)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2)*v*w
[4, 40, 57, 189, 196, 223, 329, 937, 972, 1817, 2184, 3194, 3345]
X(6129)
X(5515)
Σ b*c*(b-c)*(a^2+(b+c)^2)*v*w
[4, 75, 388, 1010, 1065, 1220, 2345, 4385]
(b-c)*(a^2+(b+c)^2)/a
(230,231)∩(513,3700)
X(5521)
Σ (b-2)*(a^2-b^2+c^2)*(a^2+b^2-c^2)*v*w
[4, 19, 28, 34, 286, 915, 1118, 1119, 5317]
(b-c)/(b^2+c^2-a^2)
Isogonal conjugate of X(1332)
-0.772000939862511

Some triads of (N, I, J) such that Z’=X(I) and Z”=X(J) for n=N:

(1, 11, 214), (2, 115, 2482), (3, 125, 1511), (5, 137, Q5), (6, 125, Q6), (8, 11, 1145), (9, 11, Q9)
where:

Q5= (1+2*cos(2*B)+2*cos(2*C)-2*cos(2*A))*
        (2*cos(A)*(cos(2*B-2*C)-2+4*cos(A)^2)+(-  1+4*cos(A)^2)*cos(B-C)) : :
     = On lines (2,1263), (3,2888), (5,930), (30,128), (137,3628) (at least)
     = On loci K038, K067
     = Complement of X(1263)
     = Inverse of X(5898) in circumcircle
     = Midpoint of: (5,930) (at least)
     = Reflection of (137/3628) (at least)
     = [7.346237636455233551025, 4.968703721274385706387, -3.189778541954149563316]

 Q6= a*(a^4-b^4-c^4+b^2*c^2)*(2*a^2-b^2-c^2)::
     = On lines (2,67), (3,1177), (5,542), (6,110), (74,5085), (113,1503), (125,3589) (at least)
     = On loci: K042, K043, K565
     = Complementary conjugate of X(858)
     = Complement of X(67)
     = Midpoint of: (6,110) (at least)                               
     = Reflection of: (125/3589), (141/5972) (at least)
     = [0.9502357345836802528899, 0.2943117751284885726792, 2.998339837010649974545]

Q9 = (2*a^2-a*(b+c)-(b-c)^2)*(a^2-2*a*(b+c)+b^2+b*c+c^2)::
      = On lines (1,3939), (2,3254), (3,2801), (9,100), (10,528), (119,516), (142,3035) (at least)
      = Complement of X(3254)
      = Midpoint of: (9,100) (at least)
      = Reflection of: (142/3035) (at least)
      = [3.086904417102852112698, 0.3728597156591479833209, 1.957805717019037216497]   

4 comments:

  1. Z’ lies on circumcircle of ΔA’B’C’ and Z” lies on circumcircle of ΔA”B”C”
    This seems to be satisfied whenever ΔA’B’C’ and ΔA”B”C” are cyclologic. Synthactic proof?. Thanks

    ReplyDelete
    Replies
    1. Antreas has provided a link with a counter-example.
      http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=617258&p=3678342#p3678342

      Thanks

      Delete
  2. "Synthactic"
    The word is:Synthetic

    http://en.wikipedia.org/wiki/Synthetic
    "Synthesis, the combination of two or more parts..."
    In geometry the parts are the theorems

    aph

    ReplyDelete