There are two circles
that are tangent to the circumcircle, NPC and incircle of a triangle ABC. The
first one, ΓI, is
internally tangent to NPC; the other, ΓE, is
externally tangent to NPC.
NOTE: All coordinates are barycentrics.
1.
Internal
tangent circle ΓI:
Radius= r*|(r^2-s^2+5*r*R+4*R^2)/(4*r*R+4*R^2+3*r^2-s^2)|
Center Zi:
Zi = 2*a^6-2*(b+c)*a^5-(b^2-4*b*c+c^2)*a^4+2*(b^2-c^2)*(b-c)*a^3+4*(b^2-c^2)*(b-c)*a*b*c-2*(b^2+3*b*c+c^2)*(b-c)^2*a^2+(b^2-c^2)^2*(b-c)^2
: :
= Complement of X(2968)
= Midpoint of: (1897,2968)
= On lines: (1,5), (2,1897), (3,108), (30,1785),
(105,5020), (165,1360), (521,3042), (676,2804), (867,1862), (1068,3149),
(1532,1870), (1936,5762), (2635,6357)
= (4*R^2-SW)*X(1)+3*r^2*X(2)-r^2*X(3)
= ( 1.611730809126064, 1.55156088792320, 1.822631186056290
)
Passes through X(11)
y X(108), having antipodes:
Reflection
of X(11) in Zi :
X = 2*a^6-2*(b+c)*a^5-(b^2-4*b*c+c^2)*a^4+2*(b^2-c^2)*(b-c)*a^3+4*(b^2-c^2)*(b-c)*a*b*c-2*(b^2+3*b*c+c^2)*(b-c)^2*a^2+(b^2-c^2)^2*(b-c)^2
: :
= Midpoint
of: (100,1897)
= Reflection
of: (2968/3035)
= On lines: (1,5), (100,108), (109,900),
(523,2222), (2149,3700), (2968,3035)
= (
0.580326497006925, -0.26962876949254, 3.559487554476018 )
Reflection of X(108) in Zi:
X=(b-c)^2*(-b-c+a)*(-b^2-c^2+a^2)*(a^10+(3*b*c-c^2-b^2)*a^8-7*b*c*(b+c)*a^7+(-2*c^4+22*b^2*c^2-2*b^4+b*c^3+b^3*c)*a^6+b*c*(b+c)*(9*c^2-22*b*c+9*b^2)*a^5+(2*b^4-5*b^3*c-18*b^2*c^2-5*b*c^3+2*c^4)*(b-c)^2*a^4+3*(b^2-c^2)*(b-c)*b*c*a^3*(c^2+6*b*c+b^2)+(b^2-c^2)^2*a^2*(c^2+6*b*c+b^2)*(-3*b*c+c^2+b^2)-5*(b^2-c^2)^3*(b-c)*a*b*c-(b^2-c^2)^4*(b-c)^2)
: :
= Reflection of: (2968/123)
= On lines: (3,108), (11,123), (1364,2850)
= ( 3.305222351136989, 2.97411313557093,
0.056175841372050 )
2. External
tangent circle ΓE
Radius = r*|(r^2-s^2+5*r*R+4*R^2)/(3*r^2-s^2+12*r*R)|
Center ZE:
ZE = 2*a^6-2*(b+c)*a^5-(b^2-4*b*c+c^2)*a^4+2*(b^2-c^2)*(b-c)*a^3-2*(b^2-b*c+c^2)*(b-c)^2*a^2-4*(b^2-c^2)*(b-c)*a*b*c+(b^2-c^2)^2*(b-c)^2
: :
= On lines: (1,5),
(3,105), (108,1598), (238,5762), (516,3246), (517,3008), (676,2826), (948,999), (1360,3361), (4310,5779)
= SW*X(1)-3*(4*R*r+r^2)*X(2)+(4*R*r+r^2)*X(3)
= ( 4.948911141596107, 7.44414659365719,
-3.797088302130342 )
Passes through X(11)
y X(105), having antipodes:
Reflection of X(11) in ZE :
X =2*a^9-4*(b+c)*a^8+12*a^7*b*c+(b+c)*(5*c^2-14*b*c+5*b^2)*a^6+(-5*c^4+12*b^2*c^2-5*b^4)*a^5+(b^2-c^2)*(b-c)*a^4*(b+2*c)*(2*b+c)+2*(b^4-3*b^3*c+b^2*c^2-3*b*c^3+c^4)*(b-c)^2*a^3-(b^2-c^2)*(b-c)^3*a^2*(3*c^2-2*b*c+3*b^2)+(b^4-c^4)*(b^2-c^2)*a*(b-c)^2-(b^2-c^2)^3*(b-c)*b*c
: :
= On
lines: (1,5), (104,105), (106,676), (1320,2398)
= (
7.254687161947005, 11.51554264197544, -7.679951421897236 )
Reflection
of X(105) in ZE:
X =(b-c)^2*(a^7-3*(b+c)*a^6+(5*b^2+9*b*c+5*c^2)*a^5-(b+c)*(7*c^2+2*b*c+7*b^2)*a^4+(7*b^4+4*b^3*c+4*b^2*c^2+4*b*c^3+7*c^4)*a^3-(b+c)*(5*c^4-6*b*c^3+6*b^2*c^2-6*b^3*c+5*b^4)*a^2+(3*c^2+4*b*c+3*b^2)*(b^2-b*c+c^2)*(b-c)^2*a-(b^4-c^4)*(b-c)^3)
: :
= On lines: (3,105),
(11,1111), (1086,2820)
= ( 7.203893096245062, 5.53877424438016,
-3.518745270161146 )
3. Similitude
centers of circles ΓI, ΓE
Insimil-center
= X(11)
Exsimil-center
= (2*a^4-2*(b+c)*a^3+(b^2+c^2)*a^2-(b^2-c^2)^2)*(a-b+c)*(a+b-c)
: :
= On lines: (1,5), (25,105),
(109,1086), (226,1386), (1331,5856), (1458,6357), (1465,3011), (2361,5762)
= (2*R^2-SW)*X(1)+2*(2*R*r+r^2)*X(5)
= ( -1.089194017590830,
-3.21756437369972, 6.370913979510722 )
4. Extraversions
Taking
A-excircle instead of incircle, we find also two tangent circles to A-excircle,
circumcircle and NPC. One of them, ΓAI is internally tangent to NPC,
and the other, ΓAE, is externally
tangent to NPC. Let OAI and OAE be their centers and TAI
and TAE their points of contact with the circumcircle. Build and
name other circles cyclically. Then:
·
ΔOAIOBIOCI
is perspective to EXCENTRAL and FEUERBACH triangles at X(5)
·
ΔOAE OBE
OCE is perspective to EXCENTRAL and FEUERBACH triangles at X(5) and
it is also perspective to MEDIAL triangle at:
Z = (2*a^6+2*(b+c)*a^5-(b^2-4*b*c+c^2)*a^4-2*(b^2-c^2)*(b-c)*a^3-4*(b^2-c^2)*
(b-c)*a*b*c-2*(b^2+3*b*c+c^2)*(b-c)^2*a^2+(b^2-c^2)^2*(b-c)^2)*(a-b-c)^2
= Complement of X(6356)
= On lines: (2,1119), (3,281), (5,9), (268,3560), (284,1146),
(610,5787), (2322,2968), (3739,5745)
= ( 4.713912920783893, 3.19721412780796, -0.748443570013695 )
·
Lines (TAI
TAE), (TBI TBE), (TCI TCE)
concur at X(25)
·
ΔTAITBITCI
is perspective to CIRCUMPERP1 and FEUERBACH triangles at X(4220) and X(2),
respectively.
·
ΔTAETBETCE
is perspective to CIRCUMPERP2 and MIDARC triangles at X(28), to FEUERBACH
triangle at X(4), and to TANGENTIAL triangle at:
Z= (-4*cos((B-C)/2)*sin(A/2)*cos(A)-cos(B-C)+2*cos(A)^2+cos(A))*sin(A)^2*sec(A)::
= On lines: (1,19),
(3,281), (4,198), (25,1604), (34,2270), (56,1249), (57,2331), (92,1817),
(104,1436), (108,393), (579,1783), (910,1841), (1033,1617), (1400,2202), (1753,2324), (1826,4219), (1870,2262),
(1880,1951), (2322,2975), (4224,5089)
= (
-68.607417041979430, -92.43074522778095, 99.296142120515550 )
5. Index
of centers.
6-9-13 first coordinate
|
Point
|
-68.60741704197940
|
Perspector ΔTAETBETCE - TANGENTIAL triangle of
ABC
|
-1.08919401759083
|
Exsimicenter of ΓI,
ΓE
|
0.58032649700693
|
Reflection of X(11) in ZI
|
1.61173080912606
|
Center of ΓI = ZI
|
3.30522235113698
|
Reflection of X(108) in ZI
|
4.71391292078389
|
Perspector ΔOAEOBEOCE - MEDIAL
triangle of ABC
|
4.94891114159610
|
Center of ΓE = ZE
|
7.20389309624506
|
Reflection of X(105) in ZE
|
7.25468716194700
|
Reflection of X(11) in ZE
|
César Lozada
Feb 16, 2015
No comments:
Post a Comment