X(6149)=X(13)-Isoconjugate
of X(14), (the last center published in ETC by Dec 12, 2014) has the very nice
barycentrics coordinates F(A) : F(B) : F(C), where F(A) = sin(3*A).
The
next table shows other centers with similar simple and nice trigonometric coordinates, when
these represent trilinears or barycentrics and when points can be found from other
known centers.
F(A)
|
Center with trilinears F(A):F(B):F(C)
|
Center with barycentrics
F(A):F(B):F(C)
|
sin(A)
|
X(6)
|
X(1)
|
sin(2*A)
|
X(48)
|
X(3)
|
sin(3*A)
|
X(50)
|
X(6149)
|
sin(4*A)
|
X(563)
|
X(1147)
|
sin(6*A)
|
(47,48)∩(50,2477)
|
Complement of X(562)
(2,562)∩(3,54) |
sin(2*A)^2
|
(1,1748)∩(31,48)
|
X(577)
|
sin(2*A)^3
|
(3,54)∩(4,2055)
|
|
sin(2*A)^4
|
(577,1147)∩(1971,2055)
|
|
sin(3*A)^2
|
(50,215)∩(1109,2619)
|
(6,1511)∩(1971,3258)
|
sin(3*A)^3
|
(49,50)∩(54,2088)
|
|
cos(A)
|
X(3)
|
X(63)
|
cos(2*A)
|
X(47)
|
X(1993)
|
cos(3*A)
|
X(49)
|
(48,63)∩(662,2167)
|
cos(4*A)
|
Eigencenter of anticevian triangle of
X(563)
On line (1,1748) |
(2,95)∩(50,1993)
|
cos(A)^2
|
X(255)
|
X(394)
|
cos(A)^3
|
X(1092)
|
(48,63)∩(92,1958)
|
cos(A)^4
|
(1,775)∩(47,560)
|
(2,801)∩(32,1993)
|
cos(2*A)^2
|
(1,1748)∩(560,2964)
|
(2,95)∩(32,1994)
|
tan(A)
|
X(19)
|
X(4)
|
tan(2*A)
|
X(1820)
|
X(68)
|
tan(3*A)
|
X(562)
|
|
tan(A)^2
|
X(1096)
|
X(393)
|
tan(A)^3
|
Isogonal conjugate of X(1102)
(19,158)∩(811,2128) |
Isogonal conjugate of X(3964)
(4,51)∩(25,393) |
tan(A)^4
|
Polar conjugate of X(4176)
(133,3863)∩(185,1208) |
|
tan(2*A)^2
|
(68,577)∩(216,2165)
|
No comments:
Post a Comment