|
TRIANGLE
|
LOCUS OF P (F, G and ETC indexes)
|
Gibert's
catalogue |
ABC
|
The
plane of ABC
|
|
ANTICOMPLEMENTARY
|
Cevians
of X(2)
|
|
BCI
|
(cos(A/2)-cos(B/2)-cos(C/2)-2*cos(B/2)*cos(C/2))*a*c^2
ETC: Excenters and 1, 173, 258, 1127, 1129 |
*
|
BROCARD1
|
c^2*(-b^2*c^2+a^4)
|
K128
|
BROCARD2
|
c^2*(b^2+c^2-2*a^2)*(a^2+b^2-c^2)
|
K534
|
BROCARD3
|
c^2*(-b^2*c^2+a^4)
|
K128
|
BROCARD4
|
c^2*(b^2+c^2-2*a^2)*(a^2+c^2-b^2)
|
K535
|
CIRCUMMEDIAL
|
c^2*(c^2+a^2)
ETC: 2, 4, 6, 83, 251, 1176, 1342, 1343 |
K644
|
CIRCUMORTHIC
|
(SA+SB)*(SC*SA+S^2)*SB
ETC: 2, 4, 6, 54, 275, 1993 |
*
|
CIRCUMPERP1
|
Line(1, 6) È Circumconic ∑a^2*(-b-c+a)*y*z=0
|
|
CIRCUMPERP2
|
a*c^3*(a+c)
|
K319
|
COSYMMEDIAN
|
Cevians
of X(6)
|
|
EULER
|
(SB*SA+S^2)*SB*SA
ETC: 2, 4, 5, 53, 216, 1249, 2052 |
*
|
EXCENTRAL
|
Cevians
of X(1)
|
|
EXTANGENTS
|
a*c^3*(a+b)
|
K362
|
EXTOUCH
|
The
plane of ABC
|
|
FEUERBACH
|
a*(a^2-b^2)^2
ETC: 1, 11, 12, 523, 1109, 2588, 2589, 2616, 2618 |
*
|
FUHRMANN
|
F=c^2*(-a*b^2-b*a^2+c*a^2+a^3+b^3-b*c^2)
G=(b-c)*(c-a)*(a-b)*(a+b+c)^2 ETC: 1, 2, 6, 106, 1465, 1718, 2006 |
*
|
GREBE
INNER
|
c^2*(a^2+b^2-S)
ETC: 2, 3, 6, 3128 |
*
|
GREBE
OUTER
|
c^2*(a^2+b^2+S)
ETC: 2, 3, 6, 3127 |
*
|
HEXYL
|
(b^2+c^2-a^2)*a*c^2
|
K343
|
INCENTRAL
|
The
plane of ABC
|
|
INTANGENTS
|
Line
(6,9) È Line
(44,513)
|
|
INTOUCH
|
The
plane of ABC
|
|
JOHNSON
|
SC*(SA+SB)*(S^2+SB*SA)
ETC: 2, 3, 5, 6, 216, 343, 2165 |
*
|
LEMOINE
|
The
plane of ABC
|
|
LUCAS
CENTRAL
|
(a^2+b^2-c^2)*(a^2+b^2-c^2+4*S)*c^4*a^2
ETC: 3, 6, 3167, 3311, 5406 |
*
|
LUCAS
TANGENTS
|
(a^2+b^2-c^2)*(a^2+b^2-c^2+2*S)*c^4*a^2
ETC: 3, 6, 371, 3167, 5408 |
*
|
MACBEATH
|
The
plane of ABC
|
|
MEDIAL
|
The
plane of ABC
|
|
MIDHEIGHT
|
(SA+SB)*(S^2-2*SB*SC)
|
K004
|
MIXTILINEAR
|
a*(a+b-c)*(a-b+c)*(SA+SB)*(-SA*a-SB*b+c*SC+2*S*R)
ETC: 1, 40, 57, 1743, 2324 |
*
|
MORLEY1
|
a*c^2*(cos(A/3)-2*cos(C/3)*cos(B/3))
|
K585
|
MORLEY2
|
a*c^2*sin(C/3)*sin(B/3)
ETC: Excenters and 1, 1136, 1137, 3273, 3275, 3603, 3604 |
*
|
MORLEY3
|
(sqrt(3)*cos(A/3-Pi/6)+2*sin(C/3)*sin(B/3))*a*c^2
ETC: Excenters and 1, 1134, 1135, 3273, 3274, 3602, 3604 |
*
|
MORLEYADJ1
|
Same
than MORLEY1
|
K585
|
MORLEYADJ2
|
Same
than MORLEY2
|
*
|
MORLEYADJ3
|
Same
than MORLEY3
|
*
|
NAPOLEON
INNER
|
(3*SW-3*SA-2*sqrt(3)*S)*(SA+SB)
|
K129a
|
NAPOLEON
OUTER
|
(3*SW-3*SA+2*sqrt(3)*S)*(SA+SB)
|
K129b
|
NEUBERG1
|
c^2*(a^4-b^2*c^2)
|
K128
|
NEUBERG2
|
c^2*(2*c^2*a^2+a^4+b^2*c^2+2*a^2*b^2)
|
K423
|
ORTHIC
|
The
plane of ABC
|
|
REFLECTION
|
c^2*(c^2*a^2+2*b^2*c^2-c^4-b^4+a^2*b^2)
|
K005
|
SHARYGIN1
|
a^2*c^2*(-c^2+a*b)
ETC: 1, 6, 43, 81, 238, 239, 256, 291, 294, 1580, 2068, 2069, 2238, 2665 |
*
|
SHARYGIN2
|
SAME
THAN SHARYGIN1
|
|
SQUARES
INNER
|
c^2*(a^2+b^2-c^2)*(c^2+a^2-b^2)
|
K006
|
SQUARES
OUTER
|
SAME
THAN SQUARES INNER
|
K006
|
STEINER
|
The
plane of ABC
|
|
SYMMEDIAL
|
The
plane of ABC
|
|
TANGENTIAL
|
Cevians
of X(6)
|
|
VECTEN
INNER
|
(SA+SB)*(SA-SW+S)
|
K424b
|
VECTEN
OUTER
|
(SA+SB)*(SA-SW-S)
|
K424a
|
YFF
CENTRAL
|
(cos(A/2)+cos(B/2))*(cos(B/2)+cos(C/2)-cos(A/2)) *cos(B/2)*a*c^2*
ETC: 1, 177, 188, 2089 |
*
|
YFF
TANGENTS
|
The
plane of ABC
|
|
YIU
|
c^2*a^2*(-b^2*c^2-c^2*a^2+b^4-2*a^2*b^2+a^4)*(b^4+c^4-b^2*c^2+a^4-2*a^2*b^2-2*c^2*a^2)*(a^4*b^2*c^2+2*a^4*b^4+b^4*a^2*c^2-2*b^6*a^2+5*b^2*a^2*c^4-2*a^6*b^2+a^8+b^8+c^8-4*c^2*a^6+6*c^4*a^4-4*c^6*a^2+6*b^4*c^4-4*b^6*c^2-4*b^2*c^6)
ETC: 6, 195 |
*
|
Corrections (Mar 16, 2014) by Bernard Gibert:
ReplyDelete1) Cubic for CIRCUMMEDIAL is K644
2) Added X(4) to points in cubic for EULER