|
TRIANGLE
|
LOCUS OF P (F, G and ETC indexes)
|
Gibert's
catalogue |
ANTICOMPLEMENTARY
|
The plane
of ABC
|
|
BCI
|
cos(B/2)*(1+2*cos(A/2))*(cos(B/2)+1)*a*c^2
ETC: 174, 483, 1127 |
*
|
BROCARD1
|
a^2*(c*a-b^2)*(c*a+b^2)
|
K322
|
BROCARD2
|
c^2*(-b^4+c^4+a^4-c^2*a^2)
|
K531
|
BROCARD3
|
c^6*a^2*(c^2*a^2-b^4)
|
K532
|
BROCARD4
|
(c^2+a^2-b^2)*(-b^4+c^4+a^4-c^2*a^2)
|
K533
|
CIRCUMMEDIAL
|
b^2*(c^2+a^2)
ETC: 2, 76, 83, 264, 308, 1799 |
*
|
CIRCUMORTHIC
|
SAME THAN
CIRCUMMEDIAL
|
*
|
CIRCUMPERP1
|
Line (2,7) È
Circumconic ∑(a*y*z)=0
|
|
CIRCUMPERP2
|
c*(a+c)
|
K317
|
COSYMMEDIAN
|
Cevians
of X(6)
|
|
EULER
|
SA-2*S^2/SC
ETC: 2, 4, 253, 3091 |
*
|
EXCENTRAL
|
All plane
of ABC
|
|
EXTANGENTS
|
c*(a+b)*(b+c-a)
|
K033
|
EXTOUCH
|
{ }
|
|
FEUERBACH
|
(a+c)*(a+b)^2*(-b-c+a)*(-b^2+a^2+c*a+c^2)
ETC: 1, 5, 12, 3615 |
*
|
FUHRMANN
|
F=b*(a^2-b^2+c*a)*(-b^2+c^2+a^2-c*a)
G=(b-c)*(c-a)*(a-b)*(a+b+c)^2 ETC: 2, 10, 75, 1737, 2166 |
*
|
GREBE
INNER
|
c^2*(b^2-S)
ETC: 2, 4, 6, 1271, 5491 |
*
|
GREBE
OUTER
|
c^2*(b^2+S)
2, 4, 6, 493, 1270, 5490 |
*
|
HEXYL
|
c*(a+c)*(a*SA-S*r)
|
K344
|
INCENTRAL
|
{ }
|
|
INTANGENTS
|
Feuerbach
hyperbola
|
|
INTOUCH
|
{ }
|
|
JOHNSON
|
SB*(SW-SB)*(S^2+SB*SA)
ETC: 2, 4, 5, 264, 311, 324, 847 |
*
|
LEMOINE
|
{ }
|
|
LUCAS
CENTRAL
|
a^2*c^4*(a^2+b^2-c^2)*(2*S+b^2)
ETC: 3, 6, 371, 588 |
*
|
LUCAS
TANGENTS
|
a^2*c^4*((2*(3*b^2+a^2-c^2))*S+b^2*(4*a^2+b^2)-
(a^2-c^2)^2)
ETC: 6, 371, 493, 1151 |
*
|
MACBEATH
|
{ }
|
|
MEDIAL
|
{ }
|
|
MIDHEIGHT
|
b^2+c^2-a^2
|
K007
|
MIXTILINEAR
|
a*(a-b+c)*(SA+SB)(S^2-(2*(SC+SA))*c*a)
ETC: 1, 57, 1697 |
*
|
MORLEY1
|
cos(A/3)*a*c^2*(2*cos(B/3)-1)*(2*cos(B/3)+1)
ETC: 356, 357, 3602, 3604, 5456 |
*
|
MORLEY2
|
cos(A/3+Pi/3)*sin(B/3-Pi/3)*sin(B/3)*a*c^2
ETC: 1136, 3276, 3602, 3603 |
*
|
MORLEY3
|
sin(A/3+Pi/6)*cos(B/6-Pi/6)*sin(B/3)*a*c^2
ETC: 1134, 3277, 3603, 3604 |
*
|
MORLEYADJ1
|
cos(C/3)^2*cos(A/3)*(1-4*cos(B/3)^2)*a*c^2
ETC: 356, 358, 3602, 5456 |
*
|
MORLEYADJ2
|
cos(A/3+Pi/3)*cos(B/3+Pi/6)*sin(B/3)*a*c^2
ETC: 1137, 3276, 3603 |
*
|
MORLEYADJ3
|
(-1+2*cos((B+Pi)/3)*cos(B/3))*(-3+4*cos((C+Pi)/3)*cos(C/3))*sin(A/3+Pi/6)*a*c^2
ETC: 1135, 3277, 3604 |
*
|
NAPOLEON
INNER
|
(2*(b^2-a^2-2*c^2))*S
-sqrt(3)*(-c^2*(b^2+a^2)+(b^2-a^2)^2)
|
K420a
|
NAPOLEON
OUTER
|
(-2*(b^2-a^2-2*c^2))*S
-sqrt(3)*(-c^2*(b^2+a^2)+(b^2-a^2)^2)
|
K420b
|
NEUBERG1
|
((a^2+c^2)^2-c^2*a^2)*(a^2*b^2-b^4+c^2*a^2-c^4)
ETC: 2, 25, 98, 183, 385, 3407 |
*
|
NEUBERG2
|
(a^2*(b^2+c^2-a^2)+2*b^2*c^2)*(b^4-c^2*a^2)
ETC: 2, 262, 325, 427, 1916, 3329, 4518 |
*
|
ORTHIC
|
{ }
|
|
REFLECTION
|
(b^2+c^2-a^2)*((c^2+a^2-b^2)^2+c^2*a^2)
|
K060
|
SHARYGIN1
|
c*(a^2+b*c)
|
K132
|
SHARYGIN2
|
c*(a^2-b*c)
|
K323
|
SQUARES
INNER
|
(c^2+a^2-b^2)*(b^2+c^2-a^2-2*S)
|
K070b
|
SQUARES
OUTER
|
(c^2+a^2-b^2)*(b^2+c^2+a^2-2*S)
|
K070a
|
STEINER
|
{ }
|
|
SYMMEDIAL
|
{ }
|
|
TANGENTIAL
|
The plane
of ABC
|
|
VECTEN
INNER
|
SAME THAN
SQUARES INNER
|
|
VECTEN
OUTER
|
SAME THAN
SQUARES OUTER
|
|
YFF
CENTRAL
|
cos(B/2)^3*cos(A/2)*(cos(A/2)+cos(B/2))*a*c^2
ETC: 7, 174, 177, 234, 2089, 2091 |
*
|
YFF
TANGENTS
|
{ }
|
|
YIU
|
(-2*cos(B)-2*cos(3*B+2*C)*cos(2*C)+
2*cos(B)*cos(2*C)+cos(6*C+3*B)-2*sin(2*B+3*C)*
sin(B-C))*sin(B)*sin(C)*cos(C+2*B)
ETC: 5, 1994 |
*
|
Added X(427) to NEUBERG2. Thank you, Gibert
ReplyDelete