Wednesday, April 9, 2014

Areal centers


Areal center:
Let ΔA’B’C’ and ΔA”B”C” be two triangles inscribed in ΔABC. The areal center of ΔA’B’C’ and ΔA”B”C” is the point S such that the areas of ΔSA’A”, ΔSB’B” and ΔSC’C” are the same.
The next table shows the trilinear center function of the areal centers for every pair of named inscribed triangles.

Triangles
Areal center
EXTOUCH
INCENTRAL
X(1018)
EXTOUCH
INTOUCH
X(100)
EXTOUCH
LEMOINE
(4*a^2+b^2+c^2)*(a-b)*(a-c)/(4*a^2+b^2+c^2+3*a*(b+c))
On line: (662, 4069)
ETC-search 6-9-13 = 2.279224265191568599975
EXTOUCH
MACBEATH
(a-c)*(a-b)*(S^2+SB*SC)/((-a+b+c)*(SB*b+SC*c+2*S*R))
On lines: (162,4551),(1618,2222)
0.04918013762886010149472
EXTOUCH
MEDIAL
X(100)
EXTOUCH
ORTHIC
X(101)
EXTOUCH
STEINER
(b^2-c^2)/(2*a^3-(b^2+c^2)*a-(b+c)*(b-c)^2)
On lines: (1,4041), (65,4705), (75,4086)
-3.910604001388742886439
EXTOUCH
SYMMEDIAL
(b^2+c^2)*(a-b)*(a-c)/(a*(b+c)+b^2+c^2)
On lines: (163,643), (2298,4284)
4.063394297022946848274
EXTOUCH
YFF CONTACT
(b-c)/(2*a^2-a*(b+c)-(b-c)^2)
On lines: (1,650), (2,522), (57,513), (81,3737), (88,1156), (89,4724),
(105,1024), (279,3676), (676,2006), (885,3911), (1002,4893),
(1022,3675), (1026,5376),  (1121,3227), (1638,2826), (3887,4845)
-2.346744861647027810077
INCENTRAL
INTOUCH
X(4551)
INCENTRAL
LEMOINE
(a-b)*(a-c)*(b+c)*(4*a^2+b^2+c^2)/(a*(2*a^2-b^2-3*b*c-c^2))
On lines: (190,3908), (1723,5612)
-0.4731678066924118032593
INCENTRAL
MACBEATH
(a-b)*(a-c)*(b+c)*(S^2+SB*SC)/(a*((b*c+SW)*SA-S^2))
On line: (692,1897)
-0.1848021007747031358220
INCENTRAL
MEDIAL
X(3952)
INCENTRAL
ORTHIC
X(4559)
INCENTRAL
STEINER
(b^2-c^2)/(a*(a^2-b*c))
On lines: (10,514), (80,291), (313,3261), (513,894), (523,594), (741,2372),  (813,2690), (826,1089), (4013,4049), (4589,5380)
0.1903195606998795675211
INCENTRAL
SYMMEDIAL
(a-b)*(a-c)*(b+c)*(b^2+c^2)
On lines:  (11,594), (100,101), (661,3952), (765,5389), (799,4562),
 (1978,3807)
5.999448746196107405213
INCENTRAL
YFF CONTACT
(b^2-c^2)/(a*(a*(b+c)-2*b*c))
On Kiepert hyperbola
On lines: (2,513), (10,661), (76,693), (98,739), (226,4017), (321,523),
 (649,4672), (671,2787), (876,4358), (898,1290), (1647,4444),
(2051,3667), (4010,4080)
0.7387428613738780332255+C2
INTOUCH
LEMOINE
(a-b)*(a-c)*(4*a^2+b^2+c^2)/(4*a^2-3*(b+c)*a+b^2+c^2)
On line: (643,1019)
7.250456452563039901679
INTOUCH
MACBEATH
(a-b)*(a-c)*(SA^2+SB*SC)/(b*SB+c*SC-2*S*R)
On line: (163,1021)
-0.2097107384364576118994
INTOUCH
MEDIAL
X(100)
INTOUCH
ORTHIC
X(109)
INTOUCH
STEINER
(b^2-c^2)/(2*a^3-(b^2+c^2)*a+(b+c)*(b-c)^2)
On lines: (9,661), (210,4705), (312,1577), (2321,4024), (2341,2610)
2.120399798139991690641
INTOUCH
SYMMEDIAL
(a-b)*(a-c)*(b^2+c^2)/(a*(b+c)-(b^2+c^2))
On lines: (101,4040), (662,3737), (666,1026), (831,919), (1581,2664)
-2.263665312530479505429
INTOUCH
YFF CONTACT
(b-c)/(2*a^2-(b+c)*a+(b-c)^2)
On Feuerbach hyperbola
On lines: (1,3309), (7,3667), (8,514), (9,513), (21,1019), (80,2826),
(104,1477), (294,1027), (314,5214), (764,3680), (876,4876),
(900,3254), (1022,1280), (1023,1308), (1025,5377), (1156,2827)
2.308417730794870076935
LEMOINE
MACBEATH
(5*SW-3*SA)*(S^2+SB*SC)*(SA-SB)*(SA-SC)/(a*(SA^2+S^2-4*SB*SC))
-0.1732939223482771784293
LEMOINE
MEDIAL
(a^2-b^2)*(a^2-c^2)*(4*a^2+b^2+c^2)/a
On lines: (2,353), (99,110), (111,5182), (669,1634), (892,4577),
(1383,1992)
1.948852416877363244776
LEMOINE
ORTHIC
a*(a^2-b^2)*(a^2-c^2)*(4*a^2+b^2+c^2)
On lines: (101,3518), (691,827), (1625,3050)
0.4513117194169890968045
LEMOINE
STEINER
(5*SW-3*SA)*(SB-SC)/(a*(2*SW^2-3*SW*SA-3*S^2))
On lines: (523,599), (598,1499)
2.036872078295437158369
LEMOINE
SYMMEDIAL
(b^2+c^2)*(a^2-b^2)*(a^2-c^2)*(b^2+4*a^2+c^2)/(a*(b^2+c^2-2*a^2))
On lines: (826,4576), (892,5466)
-2.254331264696480276624
LEMOINE
YFF CONTACT
(3*SA-5*SW)*(b-c)/(a*((3*SA-5*SW)*a+(3*SB+SW)*b+(3*SC+SW)*c))
2.243404035004790802826
MACBEATH
MEDIAL
(S^2+SB*SC)*(SA-SB)*(SA-SC)/(a*SA)
Anticomplement of X(2972)
On Johnson circumconic

On lines: (2,1972), (4,94), (20,1075), (51,324), (107,110), (112,925),
(162,655), (250,476),  (323,450), (436,1994), (523,1624), (653,3658),
(685,4630), (877,4576), (1301,1302), (1897,4246), (2052,3060),
(3186,4232)
-0.07059630044964227674098
MACBEATH
ORTHIC
a*SA*(S^2+SB*SC)*(SA-SB)*(SA-SC)
On Johnson circumconic
On lines: (3,125), (25,114), (99,107), (110,351), (343,418), (476,930),
(1625,2081), (3265,4576)
-0.2649080012809499161772
MACBEATH
STEINER
(S^2+SB*SC)*(SB-SC)/(a*(SA+SW-6*R^2))
On line (6,2501)
1.734100567063112800206
MACBEATH
SYMMEDIAL
(SA-SB)*(SA-SC)*(SA+SW)*(S^2+SB*SC)/(a*(SA^2-SB*SC))
On line (879,2966)
-0.2984878140101378863865
MACBEATH
YFF CONTACT
(S^2+SB*SC)*(b-c)/(((S^2+SB*SC)*a-(S^2-SA*SC)*b-(S^2-SA*SB)*c)*a)
1.474964369149482119831
MEDIAL
ORTHIC
X(110)
MEDIAL
STEINER
X(5466)
MEDIAL
SYMMEDIAL
X(4576)
MEDIAL
YFF CONTACT
(b-c)/(a*(b+c-2*a))
On circumhyperbola dual of Yff parabola
On lines: (2,514), (7,3676), (75,693), (86,4833), (88,673), (106,675),
(335,4080), (900,903),  (901,927), (918,4945), (1268,3004), (1647,4089), (1797,2989), (4025,4373), (4555,4618), (4615,5468) 
-0.4590961383710460421040
ORTHIC
STEINER
a*(SB-SC)/((SA-SB)*SB+(SA-SC)*SC)
Isogonal conjugate of X(4226)
On Jerabek hyperbola

On lines: (3,512), (4,3566), (6,924), (68,525), (69,523), (71,4079),
(72,4705), (74,3563), (248,2422), (265,690), (526,895),
(826,3519), (868,879), (1176,1510), (1499,4846)
10.35662876830228477958
ORTHIC
SYMMEDIAL
a*(SA+SW)*(SA-SB)*(SA-SC)/SA
Isogonal conjugate of X(4580)
On lines: (6,67), (25,694), (110,112), (162,660), (394,3162),
(427,3051), (468,2211), (647,1624), (648,670), (933,2623),
(1112,3124), (1576,2445)
-0.4198495218937103159533
ORTHIC
YFF CONTACT
a*(b-c)/((SB+SC)*a-SB*b-SC*c)
On lines: (3,649), (63,513), (295,3572), (1790,3733)
7.711263108722297722455
STEINER
SYMMEDIAL
(b^4-c^4)/(a*(a^2*(b^2+c^2)-2*b^2*c^2))
On lines: (2,512), (141,3005), (850,1502), (882,3266)
1.355867776715018247859
STEINER
YFF CONTACT
X(3120)
SYMMEDIAL
YFF CONTACT
(SW+SA)*(b-c)/(a*((2*SA+SB+SC)*a-(SA+SB)*b-(SA+SC)*c))
On lines: (86,3253), (334,876), (1930,2530)
1.672803830975516369642


No comments:

Post a Comment